
Exercises EE

1 warmup

Consider the two-qubit state
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2
| ↑〉B +

√
3

2
| ↓〉B

)
+

1√
2
| ↓〉A

(√
3

2
| ↑〉B +

1

2
| ↓〉B
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(1)

Compute the reduced density matrices ρA and ρB and find the Schmidt decomposition

of |Ψ〉. Compute the n-th Renyi entropy

SnA =
1

1− n
log TrρnA (2)

2 Negativity

Entanglement negativity is yet another interesting quantity. In some sense mutual

information measures correlations between subsystems but not quite entanglement,

and entanglement negativity has been found to be useful alternative to quantify the

entanglement between subsystems. To define it we write the density matrix of the AB

system as

ρ =
∑

a,b,a′,b′

ρa
′b′

ab |a〉A|b〉B〈b′|B〈a′|B (3)

and define the partial transpose as

ρT =
∑

a,b,a′,b′

ρa
′b
ab′ |a〉A|b〉B〈b′|B〈a′|B. (4)

Notice that we have taken the transpose of the B-indices but have not changed anything

else. Now the definition of entanglement negativity is

EA,B = log Tr|ρT | ≡
∑
i

log |λi| (5)

where λi are the eigenvalues of ρT .
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• Denote by EnA,B = Tr(ρT )n. Show that

n = even EnA,B =
∑
λi>0

|λi|n +
∑
λi<0

|λi|n (6)

n = odd EnA,B =
∑
λi>0

|λi|n −
∑
λi<0

|λi|n (7)

• Explain why entanglement negativity is the analytic continuation of log EnA,B with

only n even to n = 1.

• Suppose ρ = |ψ〉〈ψ| is a pure state. Write ψ in a Schmidt decomposition |ψ〉 =∑
i µi|i〉A |̃i〉B. Give an explicit expression for ρT and compute EnA,B for even n.

• Analytically continue the result to n = 1 to show that for pure states the entan-

glement negativity equals the Renyi with n = 1/2:

EA,B = S
1/2
A (8)

3 Genus of replica manifold

If we compute the n-th Renyi for a conformal field theory in 1 + 1 dimensions for

a subsystem consisting of N disjoint intervals, the manifold that we get by gluing

together n copies of the original Euclidean manifold along the N intervals is quite

complicated. Try to convince yourself that the resulting manifold is a Riemann surface

of genus g = (n − 1)(N − 1). (the genus of a Riemann surfaces is roughly speaking

the number of holes). (for a picture with n = 3 and N = 2 see e.g. figure 1 in

https://arxiv.org/pdf/0905.2069.pdf).

4 Holographic EE

The metric for a constant time slice of AdS3 is

ds2 =
dz2 + dx2

z2
. (9)

Compute the length of a geodesic in this geometry between the points (z, x) = (ε, 0)

and (z, x) = (ε, L) for small ε. Compute the entanglement entropy and compare with

the result in the lecture using that the central charge c is related to the Newton constant

via c = 3/2G.
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5 C-theorem in two dimensions

Consider a unitary, Lorentz invariant 2d quantum field theory. We can associate entan-

glement entropy to an interval of proper spatial length ` which gives us a function S(`).

This interval does not have to be on a particular spatial slice, by Lorentz invariance

there is no distinguished slice anyway and the entanglement entropy can only depend

on the proper length `. Now define the following four points in the (x, t) plane

P = (−a− e, e), Q = (−a, 0), R = (a, 0), S = (a+ e, e). (10)

Given a pair of space-like separated points, there is a tensor factor in the Hilbert space

which one would get by quantizing a theory with a choice of Cauchy surface which goes

through the two points, and by restricting to the degrees of freedom localized between

the two points.

• Denote by A the subsystem defined by the pair P,R and B the subsystem defined

by Q,S. Show that one should associate A ∩B to Q,R and A ∪B to P, S.

• Show that strong subadditivity

S(A) + S(B) ≥ S(A ∪B) + S(A ∩B) (11)

implies that the function S(`) must obey

2S(2
√
a2 + ae) ≥ S(2a) + S(2a+ 2e). (12)

• Expand this equation to second order in e to show that

∂`(`∂`S(`)) ≤ 0. (13)

The function C(`) = 3`∂`S(`) is a C-function: For conformal field theories it is equal

to a constant, the central charge, and for non-conformally invariant theories it is a

function which interpolates monotonically (which is what you just showed) between

the central charge of the UV fixed point cUV = C(0) to the central charge of the IR

fixed point cIR = C(∞). It is not identical to the c-function of Zamolodchikov which

has similar properties but is defined in a different way using the two point functions of

the stress tensor.
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6 Firewalls

Suppose we make a black hole by collapsing some matter which initially was in a

pure state. After the black hole is created it will start to produce Hawking radiation.

Eventually the entire black hole will evaporate away leaving only Hawking radiation

behind. When the black hole is there we can choose a Cauchy surface (the sort of

spatial surfaces you can use to define proper initial conditions and which you can

use to quantize the theory, roughly speaking) which goes through the horizon and on

that surface we can restrict to the outside of the black hole and compute the reduced

density matrix. This reduced density matrix describes the Hawking radiation outside

the black hole. Argue that the entanglement entropy of this reduced density matrix

will first increase but eventually decrease in time again and end up begin zero at late

times (if you believe in unitarity). The moment where it reaches its maximal value is

called the ”Page time”.

Now let’s take a moment well after this Page time and look at the Cauchy slice and

define three subsystems: A is the subsystem containing early Hawking radiation, B

consists of some late Hawking radiation, and C consists of modes behind the horizon

which are correlated with the late Hawking radiation. The modes in B and C are very

much like the modes we saw in the Rindler example and in order for the horizon to

be a smooth place the systems B and C must by highly entangled as together they

must approximately describe a Minkowski vaccum. Since the BC system describes

approximately a pure state, S(BC) must be approximately zero. Also, because we

are after the page time, S(AB) < S(A). Moreover, S(B) is not zero, because the B

system is approximately thermal just as in the Rindler example. Show that the above

statements violate strong subadditivity and therefore cannot all hold at the same time.

(hint: first argue that S(ABC) = S(A)).

This is the essence of the firewall argument: if we assume local effective field theory

is valid, that there is nothing special at the horizon and that the theory is unitary we

run into a contradiction. One resolution is to give up the notion that there is nothing

special happening at the horizon.
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7 Temperature of a black hole

Just in case you have never done this: consider the Schwarzschild metric

ds2 = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2dΩ2. (14)

Wick rotate t to Euclidean time and find which periodic identification we have to do

on Euclidean time to make the Euclidean metric regular. This period is the inverse

temperature of the black hole.

8 Quantum error correction

To get an idea how quantum error correction works, read for example the first part

of section 3.1 of https://arxiv.org/pdf/1411.7041.pdf and verify the statements made

there.

9 Rindler the old fashioned way

We consider a massless scalar in 2d Minkowski and Rindler spacetime. It will be

convenient to use light-cone coordinates because in those the solutions of the field

equations are very simple. We denote by ū, v̄ the lightcone coordinates of Minkoswki

spacetime and by u, v lightcone coordinates of Rindler spacetime. The relation between

them is

ū = −e−u, v̄ = ev (15)

and the metric for these coordinates is

ds2 = −dūdv̄ = −ev−ududv (16)

• Write the action for a massless scalar field in each coordinate system and find

the most general solution of the field equations.

The general solution of the field equations is quite similar in both coordinate sys-

tems. For Minkowski spacetime we write

φ(ū, v̄) =

∫ ∞
0

dω√
2π

1√
2ω

[
e−iωūâ−ω + eiωūâ+

ω + e−iωv̄â−−ω + eiωv̄â+
−ω
]

(17)
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Similarly, in Rindler we have (where now Ω is the frequency to distinguish it from ω)

φ(u, v) =

∫ ∞
0

dΩ√
2π

1√
2Ω

[
e−iΩub̂−Ω + eiΩub̂+

Ω + e−iΩv b̂−−Ω + eiΩv b̂+
−Ω

]
(18)

The Minkowski vacuum is the state which is annihilated by the annihilation operators

â−. Similarly, the Rindler vacuum is annihilated by b̂−. The creation and annihilation

operators obey the usual commutation relations.

c) Show that for Ω > 0

b̂−Ω =

∫ ∞
0

dω[αωΩâ
−
ω + βωΩâ

+
ω ] (19)

where

αωΩ =

√
Ω

ω
F (ω,Ω), βωΩ =

√
Ω

ω
F (−ω,Ω) (20)

and

F (ω,Ω) =

∫ ∞
−∞

du

2π
exp

[
iΩu+ iωe−u

]
(21)

d) Show that for a general Bogolyubov transformation

b̂−Ω =

∫
dω[αωΩâ

−
ω + βωΩâ

+
ω ] (22)

the canonical commutation relations imply∫
dω(αωΩα

∗
ωΩ′ − βωΩβ

∗
ωΩ′) = δ(Ω− Ω′) (23)

e) Show that

F (ω,Ω) = F (−ω,Ω)eπΩ (24)

using contour deformation in the definition of F (ω,Ω).

f) Combine (20),(23) and (24) to show that∫ ∞
0

dω

√
ΩΩ′

ω
F (−ω,Ω)F ∗(−ω,Ω′) =

δ(Ω− Ω′)

e2πΩ − 1
. (25)

g) Now combine everything to compute the expectation value of Rindler particle

number in the Minkowski vacuum

〈N̂Ω〉 = 〈0|b̂+
Ω b̂
−
Ω|0〉 =

∫
dω|βωΩ|2 =

1

e2πΩ − 1
δ(0). (26)
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The final result (26) shows that the expectation value of particle number is the

finite temperature Bose-Einstein result, the δ(0) is a volume factor which reflects the

fact that we are in infinite volume, if you remove that you get the density of particles

as seen by a Rindler observer is purely thermal with temperature T = 1
2π

as in the

lecture.

Notice that at the end we did not need that many details of the theory. What was

essential was the result (24).

Yet another way to get the finite temperature result is to compute the response

of an accelerated detector in Minkowski space-time. This involves an integral of the

positive frequency Wightman function (Greens function) along the detector trajectory

and one also finds a thermal bath (see e.g. Birrell and Davies)

h)** You now have all the ingredients in place to compute the expectation value of the

Minkowski space-time energy-momentum tensor in the Rindler ground state (or

in an excited Rindler state). You will find that it diverges at the Rindler horizon.

Smooth Minkowski space-time only emerges in a mixed state (which results from

the entanglement between the two Rindler regions and tracing over one of the

two).
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